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SUMMARY 

The solution of the incompressible Navier-Stokes equations in general two- and three-dimensional domains 
using a multigrid method is considered. Because a great variety of boundary-fitted grids may occur, 
robustness is at a premium. Therefore a new ILU smoother called CILU (collective ILU) is described, 
based on r-transformations. In CILU the matrix that is factorized is block-structured, with blocks 
corresponding to the set of physical variables. A multigrid algorithm using CILU as smoother is 
investigated. The performance of the algorithm in two and three dimensions is assessed by numerical 
experiments. The results show that CILU is a good smoother for the incompressible Navier-Stokes 
equations discretized on general non-orthogonal curvilinear grids. 

KEY WORDS Navier-Stokes equations Multigrid method Smoothing method ILU factorization General 
co-ordinates 

1. INTRODUCTION 

Theoretical and practical investigations for about two decades have shown that multigrid 
methods are very suitable for solving large systems of algebraic equations resulting from 
discretization of partial differential equations. Application of multigrid principles has led to 
efficient solution methods for the incompressible Navier-Stokes equations discretized on 
Cartesian grids in two dimensions (see e.g. References 1-3). In this paper we present a method 
for general curvilinear grids in two or three dimensions. 

The main components in a multigrid algorithm are smoothing and coarse grid correction. 
The smoother should possess the smoothing property and the coarse grid approximation should 
have the approximation p r ~ p e r t y . ~  Because in general curvilinear co-ordinates mixed derivatives 
and highly stretched non-uniform grids may occur, the method should be robust. Our purpose 
here is to develop a robust smoother. Coarse grid approximation, consisting of the choice of 
prolongation, restriction and the use of Galerkin coarse grid approximation, is discussed 
e l~ewhere .~~’  Given these ingredients, our multigrid algorithm is standard. 

The discretization of the incompressible Navier-Stokes equations on a staggered general 
curvilinear grid in two and three dimensions is a complicated affair; for details see References 
8-12. Hence from the point of view of software development it is very attractive to separate the 
discretization and solution phases. Therefore we use the linear multigrid method inside an outer 
Newton iteration, together with Galerkin coarse grid approximation (GCA), so that changes in 
the discretization leave the solver code completely unaffected. In Reference 13 the smoothing 
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and approximation properties are studied for the incompressible Navier-Stokes equations 
discretized on a staggered grid in Cartesian co-ordinates. In general co-ordinates a theory is 
not available. Therefore the performance of our method is tested by numerical experiments. 

For the convection-diffusion equation with dominating convection, and hence also for the 
Navier-Stokes equations with a high Reynolds number, coarse grid approximation presents 
problems, discussed in References 7, 14 and 15. Galerkin coarse grid approximation may give 
an inaccurate coarse grid correction. Our approach is to compensate this by use of a strong 
smoother. Smoothers of ILU type are found to be suitable. For an assessment of ILU smoothing 
see Reference 16. 

We will use a coupled smoothing method, smoothing the velocity components and the pressure 
simultaneously. A well-known coupled smoothing method for the Navier-Stokes equations is 
the SCGS (symmetrical coupled Gauss-Seidel) method of Vanka,3 which works well in Cartesian 
co-ordinates, including the case of highly stretched meshes, provided that the line version (see 
e.g. Reference 17) of Reference 3 is used. However, in general co-ordinates mixed derivatives 
occur and this method works less well. Therefore we use coupled or collective ILU (CILU). This 
method has not been used before. We found this to work better than uncoupled ILU. 

Discrete systems approximating the incompressible Navier-Stokes equations are indefinite, 
so direct implementation of ILU decompositions is problematic. This problem is overcome by 
applying a so-called r-transformation as proposed in References 13 and 18-20. 

2. PARTIAL DIFFERENTIAL EQUATIONS AND DISCRETIZATION 

The tensor formulation of the incompressible Navier-Stokes equations in general co-ordinates 
is given by 

u;" = 0, 

a 
- (Ua)  + (U"Up),p + (g"Pp),p - Y j  = B", 
at 

where P p  is the deviatoric stress tensor given by 

zap = Re-'(gaYUeY + gypUPy), (3) 

with Re the Reynolds number, p is the pressure, t is the time, u", o! = 1,2, ..., nd, are 
the contravariant components of velocity, with nd the number of space dimensions, and B" 
is the contravariant component of the body force. u" and B" are derived from their 
physical counterparts u and b through the contravariant base vectors a'") of the general 
co-ordinates by 

Furthermore, gap  is the metric tensor given by g a p  = a'") * a(p). For better accuracy the variable 
I/" = Jgu" is used instead of u", where Jg is the Jacobian of the mapping; this is motivated 
in References 8, 11 and 12. 

Equations (1) and (2) are discretized in general co-ordinates on a staggered grid by using the 
finite volume method. Central differencing is used for space discretization and the so-called 
0-method is used for time discretization. As mentioned before, discretization itself is difficult and 
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so here we do not want to get into details, for which we refer to References 8-12. The discrete 
system can be written as 

with 

1 
At (6) f: = OB"" + (1 - 8)Bn + - V" - (1 - 8)Q'(V") - (1 - 8)Gp". 

Here V, B and p denote algebraic vectors containing the velocity unknowns, the right-hand-side 
grid function and the pressure unknowns respectively. The superscript n indicates the time level. 
The operator Q is non-linear owing to the convection terms. The parameter 8 = 1 in the 
numerical experiments here, which gives the backward Euler method. We assume that the 
arbitrary physical domain is mapped onto a square or cubic computational domain, as illustrated 
in Figure 1, by means of boundary-fitted co-ordinates. The underlying ordering of the unknowns 
is 

with some ordering (e.g. natural) of the grid points and N = n ,  x n 2 ,  where ni, i = 1, 2, is the 
number of cells (including virtual cells) in direction i (we specialize temporarily to two dimensions 
for simplicity). This will be called blockwise ordering. Excluding virtual grid points, the grid for 
equation m is denoted as grn, with m = 1 , 2 , 3  standing for the momentum equations in direction 
1 and direction 2 and the pressure equation respectively. 

Equation ( 5 )  gives rise to a sequence of systems of equations for a sequence of time levels. 
Since in the formulation of coarse grid operators we use GCA, which in principle is limited to 
linear problems, and (more importantly) because we wish to separate the discretization and 
solution phases, the non-linear system (5) has to be linearized. This implies that linearization 
takes place outside the multigrid algorithm. Linearization employs Newton's method; for 
example, for a typical non-linear term (UaUa)"+l in Q', 

(VU)"+1 = (Ua)"+1(Ufl), + (Ua)n(Up)n+l - (VUP)". (8) 

This splits Q' into a linear part and a non-linear part and gives Q(V"+l)  = Q1Vn+' + Qz(V"), 

, ..........._..........._........... .......................... 

........... 

- : p -points 

L 5' 

Figure 1 .  Staggered grid in computational domain. Virtual cells are used, which are indicated by dashed lines 
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with Q1 linear. Note that both Q1 and Q2 are evaluated by using V". The resulting system is 
denoted by 

KX = f, (9) 

with 

where 

(1 1) 
1 

At 
Q = - I + 8Q1, f, = f: - 8Q2(Vn). 

For convenience let the parameter 8 be absorbed into G, i.e. 8G will be simply written as G 
hereafter. If there exists a stationary solution, it satisfies 

K,x = f,, (12) 

with 

K ' = ( D  Q' G o)> fs=(;). 

3. THE R-TRANSFORMATION 

3.1. Iteration with r-transformation 

A classical iteration method for solving (9) is given by 

(14) x i + l  = xi  - M - ~ ( K ~ '  - f), 

with M a splitting of K: 

K = M - N .  (15) 

This method converges if the splitting is regular.21 The zero block in K makes a regular splitting 
impossible. A remedy is to introduce a matrix K such that a regular splitting of the product 
KK, i.e. 

K K = M - N ,  (16) 

is easy to find. This implies a splitting of K as 

K = MK-' - NK-'. 

resulting in the iterative method 

(18) x i + l  = xi - f t ~ - l ( ~ ~ i  - f). 

In Reference 22 K is called a distributive operator and iteration (18) is called distributive iteration; 
in Reference 18 K is called r-transformation and the iteration is called transforming iteration. 
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Here we adopt the latter terminology. Many iterative methods can be fitted into the framework 
of (16) and (18), such as the SIMPLE method of Patankar and S ~ a l d i n g ~ ~  and its variants and 
the DGS method of Brandt and Dinarz4 (see e.g. References 4, 13, 18-20 and 25). 

3.2. Construction of r-transformation 

A theory of constructing smoothers with r-transformation is given in Reference 13. Some 
applications to the Stokes and the Navier-Stokes equations can be found in References 18 and 
19. We summarize some results. For use as smoother in a multigrid method, an iterative method 
must have the smoothing property defined in Reference 4; see Reference 25 for an elementary 
introduction. In Reference 13 it is shown generally that if KK is of the block triangular form 

A 0  
KK=(B c )  

and can be split regularly into M - N, then the smoothing property holds for system (19) if the 
iteration matrix 

S = M-'N, (20) 

with 

has the smoothing property for its diagonal blocks. Hence the study of the smoothing property 
for systems is essentially reduced to the study of the smoothing property for single equations. 
Therefore it is attractive to choose K such that KK has the block triangular form (19). A possible 
choice for K is 

Then we have 

Choosing K,,  and K,, such that QK,, + GK,, = 0 results in the form given in (19). 
There are many possibilities for choosing K. Wittum's theory gives us a guide. In (23) we do 

not have problems in constructing a smoother for Q provided that the discretization is 
appropriate (Q should be an M-matrix). What we should do then is choose K such that the 
smoothing property exists also for the block DK,, . 

Choosing 

with E = DQ-'G, results in 

K K = (  Q o  ), 
D -F  
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where F is still to be chosen. We discretize ( 1 )  and (2) with central differences. As a consequence, 
Q is not an M-matrix for Re sufficiently large (approximately Re > 2/h in our examples, with 
h the local mesh size). If we choose -F to be an M-matrix, then it will be easy (for Re small 
enough) to obtain a smoother for the product system KK as discussed before. The first choice 
is F = DG, corresponding to the distributed Gauss-Seidel method of Reference 24. 

The second choice is F = E, giving 

leading to iterative methods of the so-called SIMPLE type.23 This gives 

For practical purposes E-' in (24) and Q-' in (26) and (27) have to be approximated. 

4. CILU DECOMPOSITION 

4.1. Approximation of K and K 
Temporarily using the blockwise ordering (7), we choose the r-transformation (cf. (26)) 

I -Q-'G 
K=(o  (I ) 3  

where the parameter [ will be used to enhance multigrid convergence. This gives 

Because Q-' is not readily available, we approximate Q by 6 = diag(Q). 
approximation g of K and an approximation KK of KK: 

N 

D - D a - ' G  
% 

The matrix KK looks like the original matrix K with the zero block replaced 
block -D@'G,  which is easy to formulate. 

(29) 

This gives an 

(30) 

by a non-zero 

4.2. Incomplete decomposition 

The residual amplification matrix of (18) is I - KKM-' .  Hence M should be close to KK but 
easily invertible. Since in practice KK is approximated by KK, we require that M be close 
t o z .  With the approximation g of K the iteration (18) becomes 

% 

(31) x i +  1 = xi - R M M - ' ( K ~ ~  - f). 

This iteration is of course different from (18), since both K and KK are approximated. 
Reference 13 gives conditions under which the smoothing property for the perturbed method 



ILU SMOOTHER FOR THE NAVIER-STOKES EQUATIONS 65 

Figure 2. Collective ordering of grid points 

(31) follows from the smoothing property for (18). Obviously (31) converges to the solution if it 
converges. Convergence may be enhanced by underrelaxation : 

(32) 

The choice of o will be discussed later. Method (32) is the smoothing iteration method that 
we use. 

xi+'  = xi - &M-'(Kxi - f). 

With incomplete decomposition one chooses 

M = (L + D)D-'(D + U), (33) 

with L and U strictly lower and upper triangular matrices respectively and D a diagonal 
matrix. A possible choice for L, D and U is as follows. Let G be a non-zero pattern and let L, 
D, U # 0 only on G. Then we require - 

M, = (KK),, ( i ,  j) E G, (34) 

from which L, D and U follow. It is known that the rate of convergence of the resulting 
iterative method depends on the ordering of the unknowns. We will number the cells in natural 
order. The V'-unknown in the left cell face, P in the lower face and p in the centre are grouped 
together in a 3-vector ui = (V', v2, P ) ~ ,  with i the number of the cell (see Figure 2). Extension 
to three dimensions is straightforward. Because of this collective treatment of the three 
unknowns, we call the resulting method collective ILU (CILU) decomposition. This collective 
ordering induces a 3 x 3 block matrix representation of KK. With our discretization the 
momentum equations and the continuity equation have the structures shown in Figure 3. The 

- 

V'-momentum equation 
Figure 3. S1 

Vz-momentum equation 
tructures of the discrete equations 

Continuity equation 
at cell i 
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grid points that have index i are grouped together. A typical row in K, say number i, has non-zero 
elements at positions (i, i f. I f 1, i f I ,  i f I f 1, i f. 1, i + 1 - 2, i - 2, i - 21, i - 21 + l), 
where I is the number of cells in the cl-direction. The stencil of K has the structure 

[: CK1= .I, * (35) 

and so does the matrix z, since DB-'G has a nine-point stencil, which does not change 
the structure of K. Here each * represents a 3 x 3 matrix. The * with an underscore corresponds 
to cell number i. We choose the non-zero pattern G = (i, i f. I f. 1, i f I ,  i f I f. 1, i f. 1) in the 
approximate factorization. 

5. TEST PROBLEMS AND RESULTS 

5.1. Multigrid algorithm 

To investigate the multigrid algorithm with CILU as smoother, we apply the method to three 
test problems. In the first two test problems, starting from the finest grid from the zero solution, 
two time steps, each accompanied by two (multigrid) iterations, are performed first to give a more 
or less representative flow field. Then we test the multigrid solver by carrying out 20 multigrid 
iterations, in which we measure the average reduction factor and the limiting reduction factor, 
which are to be defined shortly. Furthermore, the steady solution (obtained for t large enough) 
is computed, using one multigrid iteration per time step. The multigrid algorithm uses the 
W-cycle, with one pre- and one post-smoothing. The coarsest grid is fixed at 2 x 2. Coarse grid 
operators are formulated by means of Galerkin coarse grid approximation; detailed discussions 
can be found in References 5-7. Bilinear interpolation and piecewise constant interpolation are 
used respectively for the prolongation of v" and p. Restriction takes the adjoint of the so-called 
hybrid prolongation, in which for v", linear interpolation is used in direction LY but piecewise 
constant interpolation in other directions; for p ,  piecewise constant interpolation is used. 

Let r = f - Kx be the residual of equation (9). The norm of the residual is measured by 

with M the number of unknowns and the number of grid points in Ym; M = 3 in two 
dimensions and M = 4 in three dimensions. After linearization a number of multigrid iterations 
are carried out, after which a time step is completed. Let ro be the initial norm of the residual 
on the finest grid and r,, be the norm of the residual on the finest grid after n multigrid iterations. 
The average reduction factor p,, is defined by 

The reduction factor at the ith iteration is defined by 
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Figure 4. The skewed driven cavity problem and the grid used 

If pi has a limit for i -, 00, then it is the asymptotic reduction factor. Let rs = f, - K,x be the 
residual of equation (12) and r, = I/rs)I. A steady state is reached if 

is satisfied, with r,” being r, at the initial time level and r: being r, at time level t .  
The grids used for the second and third test problems were generated by the LiSS package.26 

5.2. The skewed driven cavity problem 

The skewed driven cavity problem is chosen first (see Figure 4). Skewness introduces mixed 
derivatives. A benchmark solution for this problem is available in Reference 27, where a 
collocated grid is used. This problem ,is also solved in Reference 28 by a non-linear multigrid 
method for the steady case on a staggered grid. Here we do not want to solve the differential 
equations very accurately, since our purpose is to investigate the performance of the multigrid 
algorithm with the CILU snioother. In accordance with Reference 28, the Reynolds numbers 
will be 100 and lo00 respectively. The numbering of cells is natural. Figures 5 and 6 give the 

Figure 5. Streamlines for the skewed driven cavity problem, Re = 100, Ar = 1,20 time steps, #Jr: < 3.570 x lo-’’, on 
a 128 x 128 grid 

Figure 6 Streamlines for the skewed driven cavity problem, Re = lO00, Ar = 1, 20 time steps, < < 6.424 x on a 
128 x 128 grid 
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Table I. Reduction factors for the skewed driven cavity problem, [ = 2 

Grid 16 x 16 32 x 32 64 x 64 128 x 128 

i 
Pi 

P i + l  

Pi+' 
P i + 3  

P i + 4  

r0 

5 + 4  

P 

i 
Pi 
Pi+ 1 

Pi+' 

P i + 3  

Pi+4 

f-0 

r i + 4  

P 

16 
0.3466 
0.348 1 
0.3493 
0.3505 
0.3515 

0.9608 x 10-3 
ow49  10-13 

0.3 134 

16 
0.4735 
0.4839 
0.5059 
0.5191 
0.5206 

0.8115 x 
0.6937 x 

0.4973 

Re = 100 

16 
0.3504 
0.3447 
0.3409 
0.3396 
0,3407 

0.1270 x lo-' 
0.1306 x lo-'' 

0.3 167 
Re = 1000 

16 
0.4733 
0.4724 
0-472 1 
0.47 13 
0.47 17 

0.1435 x lo-' 
0.2613 x 

0.4603 

16 
0.3213 
0.3506 
0.4266 
0.4513 
0.438 1 

0.8138 x l ow3  
0.2364 x lo-'' 

0.3742 

16 
0.4105 
0.4156 
0.4087 
0.4146 
0.41 18 

0.1245 x lo-' 
0.2429 x lo-'' 

0.41 16 

16 
0.4825 
0.4829 
0-4832 
0.4833 
0.4832 

05088 x 
0.5613 x lo-" 

0.400 1 

16 
0.4396 
0.4541 
0-4643 
0.4706 
0.4741 

0.5575 x 
02036 x lo-" 

0.3786 

streamlines obtained after 20 time steps, which agree well with the solutions presented in 
References 27 and 28. Here [ = 2, the time step At = 1 and one multigrid iteration is performed 
for each time step. The underrelaxation parameter w is fixed at 0.7 for all two-dimensional 
problems. Larger time steps are not used, because it is found that with a larger time step I', 
decreases at a slower speed than with a smaller time step and therefore the termination time 
for achieving the same ri is larger with a larger At. Furthermore, convergence problems arise 
after several time steps with larger time steps for high-Reynolds-number cases; At has to be 
taken sufficiently small in order to maintain diagonal dominance and improve smoothing. This 
can be seen in the next test problem. Table I presents reduction factors for five successive 
multigrid iterations on various grids before rounding error takes effect, taking the solution 
obtained after two time steps with At = 0.5 as the initial solution for the linear multigrid 
iterations. The convergence rate is satisfactory and independent of mesh size. 

The dependence of multigrid convergence on [ is given in Table 11. Apparently, [ should not 
be too large. The rate of convergence is not very sensitive to [ and good values of [ do not 
depend much on Re. 

5.3. The L-shaped driven cavity problem 

This problem is proposed in Reference 28 and is illustrated in Figure 7(a). The compuational 
domain is depicted in Figure 7(b). The top wall moves from right to left. The well-known 
phenomenon appears that convergence of ILU smoothers is influenced by the numbering of 
grid points. The reason is explained in Reference 25 (see section 7.8 and the references cited 
therein) for anisotropic convection-diffusion equations. Therefore, instead of the natural order- 
ing, a backward (lexicographical) ordering is employed, in which the numbering of cells takes 
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Table 11. Dependence of multigrid convergence on ( in the skewed driven cavity problem, finest 
grid 128 x 128 

1, 16 
1.5, 16 
2, 16 
4, 16 
5, 16 
6, * 

1, * 
1.5, 16 
2, 16 
4, 16 
5, 16 
6, * 

0.7707 
0-41 16 
0-4825 
0.5712 
0.6841 

04097 
0.4396 
0.4619 
0.6322 

0-77 19 
0.4 127 
0.4829 
0.5729 
07250 

0.4108 
0.4541 
0.4628 
0-67 1 1 

Re = 100, ro = 0.5088 x 

0.7726 0.7730 0.7731 
04138 0.4148 0.4157 
0.4832 0.4833 0.4832 
0.5728 0.5745 0.5908 
0.7467 0.7330 0.6975 

Divergence 
Re = 1O00, ro = 0.5575 x 

Divergence 
0.4118 0.4127 0.4136 
0.4643 0.4706 0.4741 
0.4648 0.4715 0.48 12 
0.6851 0.6760 06490 

Divergence 

0.6219 x lo-' 
0.1752 x lo-" 
0.5613 x lo-" 
0.2079 x 
0.6709 x lo-" 

0.8955 x lo-'' 
0.2036 x lo-" 
0.6364 x lo-'' 
0.8905 10-9 

0.6373 
0-3774 
0~4001 
0-4793 
0.5702 

0.3633 
0.3786 
0-4497 
0.5131 

place first in the reverse direction of the 5'-direction and then in the reverse direction of the 
t2-direction, starting from corner D. The Reynolds numbers are 100 and lo00 respectively. 
Figures 8 and 9 give the streamlines for the two cases, which are in good agreement with those 
given in Reference 28. One multigrid iteration is employed for each time step. Note that the 
time steps for Re = 100 and 10o0 are different. Compared with the time step for the skewed 
driven cavity problem, the time step for Re = loo0 has to be smaller, otherwise the multigrid 
algorithm fails after a few time steps because of lack of diagonal dominance, as discussed before. 
Of course, the time step can be larger for lower Reynolds numbers. However, we take Ar = 0.5 
for both cases in measuring reduction factors. The reduction factors and the dependence of 
multigrid convergence on c are presented in Tables I11 and IV. 

In this test problem the parameter c must be greater than unity and can be rather large. It 
is clear that the optimal value of is problem-dependent and an appropriate choice of [ improves 
the multigrid performance. However, in both cases c = 2 would give satisfactory convergence. 
Table I11 shows that the rate of convergence is independent of the mesh size. 

a. b. 
Figure 7. (a) The L-shaped driven cavity problem with a grid generated by a biharmonic grid generator. (b) The 

computational domain 
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Figure 8. Streamlines for the L-shaped driven cavity problem, Re = 100, At = 1, 20 time steps, ryr: < 1.905 x 
on a 128 x 128 grid 

5.4. A 30 channelflow 

A further test on CILU is performed in three dimensions for a flow in a channel with a 
backward-facing step, as illustrated in Figure 10. The grid is uniform in direction 3 and 
biharmonic in plane 1-2. Here we consider only Re = 100. The final time is 20 and the time 
interval At = 0.25 is chosen based on numerical experiments. For the sake of saving computation 
time, the F-cycle with one pre- and one post-smoothing is employed. The underrelaxation factor 
o = 0.8 and the parameter [ = 2. At each time step one multigrid iteration is performed. CILU 
is generalized to three dimensions by using Gauss-Seidel in the third direction. In a smoothing 
sweep, planes parallel to plane 1-2 are visited successively along direction 3, with CILU applied 

Figure 9. Streamlines for the L-shaped driven cavity problem, Re = IOOO, Af = 0.2, 100 
on a 128 x 128 grid 

time steps, rf/rp < 1.172 x W4, 
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Table Ill.  Reduction factors for the L-shaped driven cavity problem, ( = 2 

Grid 16 x 16 32 x 32 64 x 64 128 x 128 

i 
Pi 
Pi+ 1 

Pi+Z 
P i + 3  

Pi+4 

YO 
'i+4 

iJ 

i 
Pi 

Pi+  1 

P i + 2  

P i + 3  

P,+4 

'0 
'i+4 

P 

16 
0.3256 
0.3274 
0.3290 
0.3303 
0.33 13 

0.3096 x 
0.9552 x 

0.2982 

16 
0.3 126 
0.3 143 
0.3 156 
0.3 164 
0.3 169 

0.1208 x 
0.8155 x 

0.2764 

R e =  100 

16 
0.3338 
0.3360 
0.3377 
0.3392 
0.3404 

0.3104 x 
0.1471 x 

0.3046 

Re = 1000 

16 
0.2737 
0.3098 
0.3135 
0.2879 
0.2834 

0-1859 x 
0531 1 x 

0.2970 

16 
0.3392 
0.34 18 
0.3438 
0.3453 
0.3465 

0.3076 x 
0.1531 x 

0.3054 

16 
0.3200 
0.3255 
0.33 12 
0.3360 
0.3391 

0.1438 x 
0.1032 x 

0.3110 

16 
0.5285 
0.2465 
0.22 15 
0.493 1 
0.3 166 

0.4837 x 
0.1873 x 

0.30 16 

16 
0.3384 
0.3395 
0.3405 
0.34 14 
0.3423 

0.9281 x 
0.1025 x 10-13 

0.3 178 

Table IV. Dependence of multigrid convergence on [ in the L-shaped driven cavity problem, finest grid 
128 x 128 

l, i Pi P i +  1 P i + z  P i + 3  Pi+4 'i+4 iJ 

1, * 
1.5, 16 
2, 16 
4, 10 
6, 10 
10, 10 
20. 10 

1, * 
1.5, 16 
2, 16 
4, 14 
6, 13 
10,12 
20, 12 

0.6650 
0.5285 
0.1919 
0.1 504 
0.1308 
0.1476 

0.6405 
0.3384 
0.2188 
0.1 840 
0.1730 
0.1787 

0.6855 
0.2465 
0.1951 
0.1550 
0.1358 
0.1 500 

0.7 172 
0.3395 
0.2 196 
0.1842 
0.1728 
0.1786 

Re = 100, ro = 0.4837 x 

Divergence 

0.6890 0.7198 0.7366 
0.221 5 0.493 1 0.3166 
0.1934 0.1934 0.1978 
0.1566 0.1561 0.1554 
0.1406 0.1454 0.1685 
0.1523 0.1553 0.1933 

Re = 1000, ro = 0.9281 x 

Divergence 

0.75 16 0.7658 0.7729 
0.3405 0.3414 0.3423 
0.2202 0.22 15 0.2232 
0.1845 0.1846 0.2058 
0.1726 0.1730 0.1856 
0.1785 0.1788 0.1910 

0.1207 x lo-' 
0.1873 x 
0.2582 x 
0.1940 x 
0.3214 x 
0.2704 x 

0.9667 x lo-" 
0.1025 x 
0.5794 x 
0.1683 x 
0.2123 x 
0.2378 x 

05246 
0.3016 
0.1846 
0.1534 
0.1350 
0.1333 

0.4476 
0.3 178 
0.2099 
0.1780 
0.1622 
0.1633 
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Figure 10. The channel with a backward-facing step and a 24 x 38 x 8 grid 

to each plane. On the coarsest grid 10 sweeps of CILU smoothing are carried out to solve the 
equation system. As time marches, the reduction factor gradually approaches a constant value. 
In Table V we present the reduction factor on two grids at the final time, as well as the ratio 
rzo/rg.  The rate of convergence is very satisfactory. Figure 11 shows two particle traces 
obtained on the 24 x 36 x 8 grid. We clearly see that the flow is very different from that obtained 
in two  dimension^,^^ where the flow in the backward-facing step forms a closed recirculation 
region. 

Table V. Reduction factors 7, and ratios rsZo/r: 

Grid P rfo/rp 

12 x 18 x 4 0.0489 0.7457 x 
24 x 36 x 8 0.1118 0.9494 x 

Figure 11. Two particle traces in the channel flow on the 24 x 38 x 8 grid 
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6. CONCLUSIONS 

Based on collective incomplete LU factorization with r-transformation, a new smoother called 
CILU is presented for the incompressible Navier-Stokes equations in general co-ordinates. Apart 
from the underrelaxation factor o, another parameter ( is introduced to enhance smoothing. A 
multigrid algorithm using CILU as smoother is investigated numerically, using the skewed driven 
cavity and the L-shaped driven cavity as test problems. The performance of the multigrid 
algorithm is studied by measuring reduction factors on various grids. 

The numerical experiments show that the reduction factors are almost independent of mesh 
sizes and slightly dependent on the Reynolds number. 

The effect of parameter [ is investigated on 128 x 128 grids. The results show that a proper 
choice of ( improves the multigrid performance, sometimes very much as in the L-shaped driven 
cavity problem. The optimal value of ( is problem-dependent, but a fixed choice ( = 2 seems to 
be a good compromise. (Some numerical tests on convergence dependence on the under- 
relaxation parameter o and comparisons of performance between CILU and other smoothers 
can be found in Reference 10. The results for various problems show that it is possible to fix 
w at a certain value, say 0.8.) 

The well-known anisotropy of ILU smoothers is encountered here in the L-shaped driven 
cavity problem, where meshes are stretched more in one direction than in another. This problem 
is cured by simply changing the ordering of cells. 

Owing to central differencing of the partial differential equations, the time step should be 
sufficiently small for high Reynolds numbers. Otherwise the algorithm may fail after several time 
steps. 

Numerical experiments are carried out in three dimensions for a flow in a channel with a 
backward-facing step. Satisfactory results are achieved. 

To sum up, the CILU smoother is a good smoother. 
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